

VRLA Battery Technical supports

Topics

Parameter setting

Storage and installation

Maintenance and test

Battery theory and structure – working theory

Battery theory and structure – oxygen recombination

Battery theory and structure – oxygen recombination

Battery theory and structure – influence of Temp.

Gaston

Parameters	Unit	Setting value	Parameters	Unit	Setting value
Float voltage	v	54	Float temp. compensation	V/°C	-0.072
Boost voltage	V	56.4	Boost temp. compensation	V/°C	-0.12
Charge current	A	0.1C ₁₀	LLVD voltage	V	45.6
Over current point	A	0.20C ₁₀	BLVD voltage	V	44
Cyclic Boost interval	day	90	LLVD recovery voltage	V	49
Cyclic Boost time	h	24	High voltage warning	V	57.6
To boost capacity	%	80	Low voltage warning	V	46
To boost Current	Α	0.05C ₁₀	High temperature warning	°C	35
To float Current	Α	0.005C ₁₀			

Parameter setting – boost charge

Parameter setting – charge current

www.gaston.com.hk

Parameter setting – boost charge current limited

Parameters	Unit	Setting value
Charge current	A	0.1C ₁₀
Over current point	A	0.20C ₁₀
Cyclic Boost interval	day	90
To boost capacity	%	80
To boost Current	А	0.05C ₁₀
Cyclic Boost time	h	24
To float Current	А	0.005C ₁₀

Parameter setting – temperature compensation

Parameters	Unit	Setting value
Float temp. compensation	V/°C	-0.072
Boost temp. compensation	V/°C	-0.12

Parameter setting – discharge current

www.gaston.com.hk

Parameter setting – discharge current

Low

High

Plate structure like sponge

Influence of discharge current

Load current (A)	LLVD (V)	BLVD(V)
I<0.025C₁₀	47.5	47.3
0.025C ₁₀ ≤I<0.05C ₁₀	46.3	46.1
0.05C ₁₀ ≤I<0.1C ₁₀	45.6	44.9
0.1C ₁₀ ≤I<0.2C ₁₀	45	44
0.2C ₁₀ ≤I<0.5C ₁₀	44.5	42

Parameters	Unit	Setting value
LLVD recovery voltage	v	49
High voltage warning	v	57.6
Low voltage warning	v	46
High temperature warning	°C	35

Topics

Capacity decreases because of **self discharge** even at open circuit storage, about 94% left after 3 months at 25 °C irreversible sulfation will decrease battery service life if batteries fail to be charged in time

- Recharge after storage for 3 months. The maximum storage time < 6 months
- Storage environment: ventilated, room temperature, dry and clean
- Implement **First-in First-out** stock keeping
- The batteries can **not be stored outside** at low temperature. The **container** becomes harden and fragile at extremely low temperature
- Narada recommend that do not store battery in the site for a long time after installation

- Have tools ready (hex-keys, torque wrench, voltmeter)
- To avoid dangerous shorts use only insulated tools
- Take off rings, metallic wristband watches, pendants
- Wear protective goggles
- Watch out when lifting heavy batteries

- Step 1 Check voltage of each cell or monobloc supplied (V>2.04Vpc)
- Step 2 Switch-off rectifier/charger according to supplier instructions
- Step 3 Place all cells or monoblocs onto rack or tray
- Step 4 Check for proper polarity sequence + + + and apply ID#
- Step 5 Take away terminal cover and install connectors
- Step 6 Tighten with proper torque terminal screws and replace cover
- Step 7 Verify for proper voltage and polarity of the string, for example 48V system the battery string voltage should be higher than 50V.
- Step 8 Connect cables and voltage sending leads to rectifier/charger and tighten screws
- Step 9 Switch on the rectifier according to supplier instructions
- Step 10 Verify cooling, ventilation and ventilation openings
- Step 11 Verify string voltage when in constant voltage charge state

- **Horizontal** is recommended for 2V series, vertical for 12V series
- Vertical should be notified in advance

Service life of 500E under different installation

Storage and installation – ventilation

Gap between each battery should be 10mm to make sure ventilation good.
Too close would cause high temperature and hydrogen accumulation.

Storage and installation – ventilation

 All lead acid batteries generate hydrogen more or less, so it is important to keep ventilated.

- Tighten the screw, or loose connection would cause fire.
- Gap between each battery should be 10mm to make sure ventilation good. Too close would cause high temperature and hydrogen accumulation.
- Install battery horizontally for 2V series, vertically for 12V series, which is strongly recommend by Gaston.
- Battery temperature difference will impact on the uniformity of battery performance and shorten service life. Avoid direct sunlight or other heat sources.

Topics

Storage and installation

Maintenance and test

Maintenance and inspection – precautions 1

- Battery system is the last defense of the power system, reliability is always the most important
- It is not advisable to turn off the switching power supply or A.C. to do the discharge test; There must be 1 bank battery on line during the test or replacement.
- **Guard against short circuit** Short circuit current is large due to the low internal resistance; potential safety hazard will be happened in case of short. Please use insulation tools and do not put metal tools on batteries.
- Guard against reversed polarity during installation and replacement otherwise the equipment will be damaged.
- Fasten of the connectors screw Very important, detect and fasten once a year

- Timely and sufficient of charge of batteries after discharge, equalization charge is recommended.
- Never clean the batteries with any organic solvents.
- Never try to open valves of sealed batteries or add any something into batteries.
- Do not smoke or use open fire near batteries.
- The batteries can be recycled so that right treatment of batteries necessary. Batteries contain lead, which will do harm to environment or human in case of badly disposal.
- Please look up for the right treatment method according to your local laws or send back to our service center for replacement or disposal.

- Monthly and quarterly maintenance check the cleanness, ambient temperature, float voltage
- Yearly maintenance repeat the quarterly maintenance check that whether there is loose connection discharge 30% of the rated capacity on actual load for capacity check for batteries of more than 3-year-operation
- 3-year maintenance

carry out the capacity test every 3 years carry out the capacity test every year after 5-year-operation

Frequency
After start-up and then every 6 to 12 monnths
After start-up every 6 to 12 monhs
After full charge every 6 to 12 months
After start-up with the same equipment and at the same measuring point every 6 to 12 months
Once in summer time or a needed
Once a year for cleanliness
Once a year with the operational load

The collected data should be kept at the battery site and evaluated as function of their evolution in time. Significant deviations should be reported.

Maintenance and inspection – healthy status monitoring

• Multi-meter

Common tool for voltage measurement

Intelligence load /dummy load

Common equipment for discharge test to precisely determine the capacity. Continuously adjustable intelligence load of 48V, 0~150A discharge current for mobile site.

Internal resistance/conductance

Rapid, the determination of battery capacity can be served as reference.

Routine tools

Open spanner, screwdriver, inner-hexagon wrench for installation, replacement or daily maintenance.

• clip-on ammeter

Maintenance and inspection – discharge test

Online test

Dummy load

Intelligent load

Maintenance and inspection – conductance test

- Nonlinear relationship between internal resistance and capacity
- The conductance difference between new batteries with $\pm 10\%$ Refer to the verification results for reference
- Detect the failure batteries short circuit, open circuit, capacity < 40%
- Analysis method

- Photos
- Basic information
- Discharge test
- Parameter setting
- Alarm record

Gaston technical support team

gaston@mailcentre.com.cn gaston@gaston.com.hk

www.gaston.com.hk

Thank you

